Study of the High Energy Gamma-ray Emission from the Crab Pulsar with the MAGIC telescope and Fermi-LAT
نویسندگان
چکیده
My thesis deals with a fundamental question of high energy gamma-ray astronomy. Namely, I studied the cut-off shape of the Crab pulsar spectrum to distinguish between the leading scenarios for the pulsar models. Pulsars are celestial objects, which emit periodic pulsed electromagnetic radiation (pulsation) from radio to high energy gamma-rays. Two major scenarios evolved in past 40 years to explain the pulsation mechanism: the inner magnetosphere scenario and the outer magnetosphere scenario. Both scenarios predict a high energy cut-off in the gamma-ray energy spectrum, but with different cut-off sharpness. An exponential cut-off is expected for the outer magnetosphere scenario while a super-exponential cut-off is predicted for the inner magnetosphere scenario. Therefore, one of the best ways to confirm or refute these scenarios is to measure the energy spectrum of a pulsar at around the cut-off energy, i.e., at energies between a few GeV and a few tens of GeV. All past attempts to measure pulsar spectra with ground-based instruments have failed while satellite-borne detectors had a too small area to study detailed spectra in the GeV domain. In this thesis, the gamma-ray emission at around the cut-off energy from the Crab pulsar is studied with the MAGIC telescope. The public data of the satellite-borne gamma-ray detector, Fermi-LAT, are also analyzed in order to discuss the MAGIC observation results in comparison with the adjacent energy band. In late 2007, a new trigger system (SUM trigger system) allowed to reduce the threshold energy of the MAGIC telescope from 50 GeV to 25 GeV and the Crab pulsar was successfully detected during observations from October 2007 and January 2009. My analysis reveals that the energy spectrum is consistent with a simple power law between 25 GeV to 100 GeV. The extension of the energy spectrum up to 100 GeV rules out the inner magnetosphere scenario. Fermi-LAT started operation in August 2008. The Fermi-LAT data reveal that a power law with an exponential cut-off at a few GeV can well describe the energy spectrum of the Crab pulsar between 100 MeV and 30 GeV. This is consistent with the outer magnetosphere scenario and again, inconsistent with the inner magnetosphere scenario. The measurements of both experiments strongly disfavor the inner magnetosphere scenario. However, by combining the results of the two experiments, it turns out that even the standard outer magnetosphere scenario cannot explain the measurements. Various assumptions have been made to explain this discrepancy. By modifying the energy spectrum of the electrons which emit high energy gamma-rays via the curvature radiation, the combined measurements can be reproduced but further studies with higher statistics and a better energy resolution are needed to support this assumption. The energy-dependent pulse profile from 100 MeV to 100 GeV has also been studied in detail. Many interesting features have been found, among which the variabilities of both the pulse edges and the pulse peak phases are the most remarkable. More data would allow a more thorough investigation of the fine structure of the pulsar magnetosphere based on these features. Aiming for better observations of pulsars and other sources below 100 GeV, a new photosensor, HPD R9792U-40, has been investigated. Many beneficial properties, such as a very high photodetection efficiency, an extremely low ion-feedback probability and an excellent charge resolution have been found.
منابع مشابه
Spectral analysis of the Crab Pulsar and Nebula with the Fermi Large Area Telescope
The Crab Pulsar is a relatively young neutron star. The pulsar is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was observed on Earth in the year 1054. The Crab Pulsar has been extensively observed in the gamma-ray energy band by the Large Area Telescope (LAT), the main instrument onboard the Fermi Gamma-ray Space Telescope, during its first months of data takin...
متن کاملPulsar Simulations for the Fermi Large Area Telescope
Pulsars are among the prime targets for the Large Area Telescope (LAT) aboard the recently launched Fermi observatory. The LAT will study the gamma-ray Universe between 20 MeV and 300 GeV with unprecedented detail. Increasing numbers of gamma-ray pulsars are being firmly identified, yet their emission mechanisms are far from being understood. To better investigate and exploit the LAT capabiliti...
متن کاملPuzzling Gamma-Ray Binaries from a Fermi perspective
Results from the first two year of Fermi LAT (Large Area Telescope) observations of the bright sources LS I +61 303 and LS 5039, well observed binary systems at Xray and TeV energies, have yielded new questions at GeV energies about their nature. In survey mode the LAT observes every point in the sky every 3 hours making it an ideal monitor for these systems. These sources are proving to be sur...
متن کاملMorphological and spectral properties of the W51 region measured with the MAGIC telescopes
Context. The W51 complex hosts the supernova remnant W51C which is known to interact with the molecular clouds in the star forming region W51B. In addition, a possible pulsar wind nebula CXO J192318.5+140305 was found likely associated with the supernova remnant. Gamma-ray emission from this region was discovered by Fermi/LAT (between 0.2 and 50 GeV) and H.E.S.S. (>1 TeV). The spatial distribut...
متن کاملEstimate Of The Fermi Large Area Telescope Sensitivity To Gamma-ray Polarization
Although not designed primarily as a polarimeter, the Fermi-Large Area Telescope (LAT) has the potential to detect high degrees of linear polarization from some of the brightest gamma-ray sources. To achieve the needed accuracy in the reconstruction of the event geometry, low-energy (≤ 200 MeV) events converting in the silicon detector layers of the LAT tracker have to be used. We present preli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010